Project: Farrara Pan Candres	Sketch enclosure, all ducts, NDOs and potential
Location: Big Chocolde Room	VOC emission points on accompanying page.
Date: u/ac/03	Label all dimensions.
Enclosure Designation: PTE Control Devices (s):	Process(es) Enclosed:

NDO to VOC Emission Point

				Dis	tances	
NDO	Dimensions	Equivalent Diameter	VOC Emission Point	Minimum	Actual	Pass/ Fail?
Door	1 * K (. E '	(0.876)	Polisher	3.322	184"	Paus
tole in Room	16"	1,396	Polisher	5,581	264"	Pass
Door	2"135"	0.552	1,	2-207	184"	Pass

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

					Dista	nces	
Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Minimum	Actual	Pass/ Fail?
			ļ				
֡֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	Dimensions					Dimensions Equivalent Diameter NDO Dimensions Equivalent Diameter Minimum	Dimensions Diameter NDO Dimensions Diameter Minimum Actual

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FI ²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	14 , x10, (3-)
Male	5.582	43'5" × 10'(2)	434.17 (2)	
Down	0.542	717, × p, (7)	211,67 (2)	NEAR ratio:
Do,	0.583	ત્ત્વ, ×છ,	440.0	
		32'xm'	320.6	NDOArea EnclosureArea
		31,500	315.0	
		16'413' (2)	908n (3)	Allowable NEAR ratio ≤ 0.05,
		48'413'	624.0	
		36' x13'	468.0	
/		212==44'(2)		Pass/Fail? _ Pass
TOTAL NDO	AREA= 6.007	TOTAL ENCLOSURE	AREA= 11,094.Q	

Velocity of Air through NDO

	Exhausted	Air	Make	Up Air		
Exhaust Point	SCFM	Controlled? (Y/N?)	Make up point	SCFM		
					total NDO area - ft ² (from section 5.2)	
		*			$\frac{\text{Exhaust scfm} - 1 \text{ make up scfm}}{\text{NDO area (ft}^2)} = \frac{1}{1 + \frac{1}{2}}$	——— fpm
					fpm should be ≥ 200	
				210 10	pass/fail?	
TOTAL			TOTAL			

Test #1 0.026, 0.088
Test #3 0.027, 0.08 Test #3 0.00.,
Form 1099-2
Test #4 0.028, 0.024

© GE Mostardi Platt

Direction of Air through NDO

		Nort	nally	Direction of Air Flow			1	
NDO	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	All Points?*
Dow			\ \	. /		4	44	Fry
Hole		1		/			Mo	Yas
	-							
	\vdash							
	1		<u> </u>					
								ě
			į .					
*Check t	o verify	that airflo	w was chec	ked at top, botton	, middle, and both si	ides of enclos	sure.	
				•				
Status	of do	ors and	window	vs.				

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE).

Capture of VOC Emissions

Project: Ferra Pan Condres	Sketch enclosure, all ducts, NDOs and potential
Location: Wet Clishing Room	VOC emission points on accompanying page.
Date: 6/26/03	Label all dimensions.
Enclosure Designation: Control Devices (s):	Process(es) Enclosed:

NDO to VOC Emission Point

				Distances		
NDO	Dimensions	Equivalent Diameter	VOC Emission Point	Minimum	Actual	Pass/ Fail?
Door *1	4 8.25 (2)	0.135 (12)	Polishin Tubs	0.54	7:5"	Pais
٥. / ,	15" × 12"	0.399	30	1. 596	7.51	Pass
	" × 30."	0.82	5	0.728'	7.5'	Pass
Day #2	4"48" (2)	0,135(2)	-1	0.57	7.51	Pass
	1"x30"	0.83	~	0,7181	7.5"	Pass

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

						Dista	nces	
Exhaust Point	Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Minimum	Actual	Pass/ Fail?
*	4		- 7		y.			
				1			******	
				4				1
			41 - No.					
		w(je i					

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FT²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Drer *1	0.014	89'10' × 10'	898-33	
	0.014	32'x 16'	320.0	NEAR ratio:
	0105	32'=10'	320.0	
	0.026	13"x10'	10,83	NDOArea EnclosureArea
Door +1	0.014	411/10	410.83	
	0014	38'9" ×10'	381.7	Allowable NEAR ratio ≤ 0.05,
V	0.026	89 10 2 22 (2)	5749.34	
				Pass/Fail? _ Pars
TOTAL NDO	O AREA=0,233	TOTAL ENCLOSURE	AREA= SOAC 23	

Velocity of Air through NDO

		p Air	Make U	Air	Exhausted A	
		SCFM	Make up point	Controlled? (Y/N?)	SCFM	Exhaust Point
ft²	total NDO area - (from section 5.2)					
						2
	Exhaust scfm - 1 make NDO area (ft²	*				
	fpm should be ≥ 200				1114	
	pass/fail?					
	1		TOTAL			TOTAL

Test = 0,000,0.016

Test = 0.022,0.020

Test = 030,0.018

Test \$4,5 0,622,0.021

Direction of Air through NDO

NDO Required			Normally		1	
Enclosure Out of Enclosure Swirled Closed? All P	Out of Enclosure	Into Enclosure	Closed	Open	No.	NDO
Yes Yes		/	1		ŧ	Doorbl
		V	V	A		Dog-#2
		12.1		,		
						-
		illian				
			ļi	1 17-		
			-			
			į,			

Status of doors and windows

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE). X Yes \Bigsi No

Project:	Ferrora P	lan	Candies		Sketch enclosure, all ducts, NDOs and potential
Location:	France 8	Pan	Chacolate	Room	VOC emission points on accompanying page.
Date:	6/26/03		+:	¥	Label all dimensions.
Enclosure Control D	Designation evices (s):	n;	ρ	re	Process(es) Enclosed:

NDO to VOC Emission Point

NDO		Equivalent Diameter	VOC Emission Point	Dist	ances	
	Dimensions			Minimum	Actual	Pass/ Fail?
Door	1" 16'	A.58,"	Pivilie	38.3 7	144"	Pass
*						
				100 00		

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

Exhaust Point	Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Distances		
						Minimum	Actual	Pass/ Fail?
3/8/			-				1100	
******				310			, n	
		N. C.						

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FT²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Oan	0.5	56'x10'(1)	560 (d)	
,		22 87 470'	ع. و حد	NEAR ratio:
	ж	16'9" *10'	(67.5-	
	-	224,526,(7)	1274(4)	NDOArea = 0,0001 EnclosureArea
			7	Allowable NEAR ratio ≤ 0.05,
	*			
,				Pass/Fail?
TOTAL NDO	AREA= O.S	TOTAL ENCLOSURE	AREA= 4063	

Velocity of Air through NDO

	Exhausted	Air	Make	Up Air		
Exhaust Point	SCFM	Controlled? (Y/N?)	Make up point	SCFM		
					total NDO area - ft ² (from section 5.2)	
					(
	85			100000	$\frac{\text{Exhaust scfm} - 1 \text{ make up scfm}}{\text{NDO area (ft}^2)} = \frac{\text{Constant}}{\text{Exhaust scfm}} = \text{Consta$	———fpm
					fpm should be ≥ 200	
				4.	pass/fail?	
TOTAL	7-48-	1	TOTAL		1	

Test # 20.011
Test #2:0.009

Test \$3 = 0.012

Form 1099-2

Test MY:0,010

© GE Mostardi Platt

Direction of Air through NDO

NDO		Nori	nally	Di	rection of Air Flow		- "	
	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	All Points?*
Door			/	1			Yes	tes
								-8/9
			ļ					
			ļ					
							<u> </u>	<u> </u>
	\vdash	,	 					
	\vdash	***	<u> </u>					
		· · · · · · · · · · · · · · · · · · ·	i .					
		****	1					

Status of doors and windows

Are all access doors and windows whose areas are not included as NDOs closed during normal operation.

Yes □ No

Capture of VOC Emissions

Does all exhaust ductwork go to control (for PTE) or to a point where it can be measured (for TTE). Yes \square No

Project: Ferrage Pan Candy	Sketch enclosure, all ducts, NDOs and potential
Location: mint Room	VOC emission points on accompanying page.
Date: 6/26/03	Label all dimensions.
Enclosure Designation: $\rho \tau \epsilon$ Control Devices (s):	Process(es) Enclosed:

NDO to VOC Emission Point

NDO		Equivalent Diameter	VOC Emission Point	Dist	ances	
	Dimensions			Minimum	Actual	Pass/ Fail?
D=-	1 ** × 8 '	ાદ"	Polishar	44.24	144"	Pari
,						
turnet in the later						+

NDOs equivalent diameter = $\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$

Minimum Allowed Distance = 4 × Equivalent Diameter (NDO)

NDO to Exhaust (TTE only)

Exhaust Point	Dimensions	Equivalent Diameter	NDO	Dimensions	Equivalent Diameter	Distances		
						Minimum	Actual	Pass/ Fail?
			5.450 - 240					

Equivalent diameter =
$$\left(\frac{4 \times \text{area}}{\pi}\right)^{0.5}$$

Near Ratio [NDO Area/Total Enclosure Area]

NDO	Surface Area (FT ²)	Wall, Ceiling, or Floor Section	Surface Area (FT²)	
Ouer	0.68	48' × 12' (2)	5760(2)	
		60' 112'	720.0	NEAR ratio:
Y		sa'xn'	624,0	
		(m, r.l. ()	2840(7)	NDOArea = O.Ooog EnclosureArea
				Allowable NEAR ratio ≤ 0.05,
				Description of the second
TOTAL NDO	AREA= 0.667	TOTAL ENCLOSURE	AREA= 9256	Pass/Fail? Cass

Velocity of Air through NDO

		Jp Air	Make (Air	Exhausted A	
		SCFM	Make up point	Controlled? (Y/N?)	SCFM	Exhaust Point
ft²	total NDO areaft ²	W				
	(from section 5.2)	- 2 E-107				
ke up scfm	Exhaust scfm - 1 make up scf			-		-
²) = ———	NDO area (ft²)					Ī
	fpm should be ≥ 200					
	pass/fail?					
	1		TOTAL			TOTAL

Test \$1 - 0.012 Test \$2 - 0.008 Test \$3 = 0.007

Form 1099-2

Test \$4= 0,009

Direction of Air through NDO

NDO No.		Nor	nally	Di	rection of Air Flow			
	No.	Open	Closed	Into Enclosure	Out of Enclosure	Swirled	NDO Required to be Normally Closed?	All Points?
0000)		1	/		un m	K	tu
					****			1777
		i						
		15.						
		- A. A.	•					300
			w was chec		ı, middle, and both s	ides of enclos	sure.	
Ane all ac Yes [cess door	rs and wind	lows whose	areas are not inclu	ded as NDOs closed d	uring normal	operation.	
Cantu	re of V	OC En	nissions					

